
ICT365

Software Development Frameworks

Slides: Dr Giles Oatley

Dr Afaq Shah



Object-Oriented Programming
(C#)



In this Topic

• OOP techniques: 

• Encapsulation, information hiding,

• modularity, and 

• polymorphism

• Understand how a C# program is organised
both logically and physically

• Declare and use namespaces

• Properties

3



Additional notes: Exceptions

• Exception mechanism

• Catching and processing exceptions

• Throwing an exception

4



Object-Oriented Programming

• Object-oriented programming (OOP) - uses objects 
to design programs

• In OOP,  a program is viewed as a collection of 
objects

• Each object has a certain number of attributes and a 
set of behaviours in the form of methods

• An object can “send” another object a “message”

5



Object-Oriented Programming

The first object passes the control to the second 
object. 

The second object “receives” the “message” 

Once the execution finished, the control returns to 
the original object.

OOP is different from procedural programming.  

6



Features of Object Oriented Systems

OOP uses many techniques that are supported by any 
object-oriented language:

encapsulation (by using classes)

information hiding (by using access specifiers and 
properties)

modularity (by using classes hierarchy, 
namespaces, compilation units, etc)

polymorphism (using the same name for multiple 
methods with different signatures in the same 
class)

inheritance (using subclassing, virtual methods, 
method overriding, interfaces, etc) 7



Organisation of C# Programs

Logically, a C# program consists of a collection of classes 
(and structs).  

organised in a hierarchy of namespaces.

Some of these classes are coded by you. 

the standard .NET Framework Class Library.

use classes provided by a third party.

Namespaces are used to group these classes 
logically - rooted at System.Object.

8



Organisation of C# Programs

Physically, these classes are stored in a number of files: 

- A collection of source code files containing your class 
definitions. 

- The classes in the standard .NET Framework Class Library are 
pre-compiled into several libraries 

- The most frequently used library is mscorlib.dll stored under 
C:\Windows\Microsoft.NET\Framework.

Your own source code files need to be compiled into .NET 
assemblies. 

- compilation unit.

9



Namespaces

C# programs and libraries are a collection of classes

To avoid name clashes between these classes, 
namespaces are used to group relevant classes together

namespace NameSpaceName {

class definitions

}

Namespaces can be nested.

“using” directive to include class names from another 
namespace

A class has a short name and qualified name. For 
example, in the class Client (see later part of this 
lecture notes), the short name is “Client” and the 
qualified name is “ClientDB.Client”. 10



The Global Namespace

In fact, every class is in a namespace.

If a class is not defined inside an explicit namespace, 
it belongs to the global nameless namespace.

11



The Global Namespace Example

class TestApp

{

// Define a new class called 'System' to cause problems.

public class System { }

// Define a constant called 'Console' to cause more problems.

const int Console = 7;

const int number = 66;

static void Main()

{

// The following line causes an error. It accesses TestApp.Console,

// which is a constant.

//Console.WriteLine(number);

}

}

// The following line causes an error. It accesses TestApp.System,

// which does not have a Console.WriteLine method.

System.Console.WriteLine(number);

// OK

global::System.Console.WriteLine(number); 12



Compilation Unit

Most source code files contain one or more full 
class definitions, such as Student.cs.

source code file - a compilation unit, 

Some source code files contain partial class 
definitions. 

Classes in a compilation unit - compiled into 
the same assembly

13



Information Hiding

One important principle in class design is information 
hiding.

For example, how we represent the name of a client is an 
internal implementation issue

use three string variables to represent the name (first, 
second and last names). 

fields declared to be private - not accessible (or visible) 
outside of the class.

- representing a name with three strings is far from ideal - there 
are better ways of doing it. However if we change the 
implementation later the other classes that use the client class 
would not be affected.

14



Access Specifiers 

Control the visibility and accessibility of class 
members using access specifiers.

Four access specifiers:

public:  unlimited access

private:  access limited to the containing class

protected:  access limited to the containing class or 
types derived from the containing class

internal:  access limited to this program

The default access specifier is private. 

15



Controlled Access

To get the name of the client so the name can be displayed.

‣ such accessor is called “get accessor” 

- or to change the name if the old name is found to be 
incorrect.

‣ such accessor is called “set accessor”

C# introduced a new kind of members  for the above 
purposes. They are called property.

16



Properties

A property is a member that provides controlled 
access to an attribute of an object or a class. 

Examples of properties include the length of a 
string, the size of a font, the caption of a 
window, the name of a client, and so on. 

Properties are named members of a class with 
associated types, and the syntax for accessing a 
field and a property is the same. 

A property does not denote storage location. 

17



FullName Property

Property declaration:

public string FullName
{

get 
{ 

return firstName + " " +secondName + " " + lastName; 
}

set 
{ 

SetNames(value); 
}

}

We can read and modify the property, for 
example:

Client c = new Client(“Joe Blow”);
string name = c.FullName;   // cause get accessor to execute.
c.FullName = “John Smith”;  // cause set accessor to execute, value=”John 

Smith”. 18

The value keyword is used to
define the value being assigned
by the set accessor.



Properties typical pattern 

• Typical pattern for accessing fields.
private int x;

public int GetX();

public void SetX(int newVal);

• Elevated into the language:
private int count;

public int Count {

get { return count; }

set { count = value; }

}



Accessing fields

• Using a property is more like using a public field 
than calling a function:

FooClass foo;

int count = foo.Count; // calls get

int count = foo.count; // compile error

• The compiler automatically generates the 
routine or in-lines the code.



class TimePeriod

{ 

private double seconds; 

public double Hours 

{ 

get

{ 

return seconds / 3600; 

}

set

{ 

seconds = value * 3600; 

} 

} 

} 

https://msdn.microsoft.com/en-AU/library/x9fsa0sw.aspx



class Program 

{ 

static void Main() 

{ 

TimePeriod t = new TimePeriod(); 

// Assigning the Hours property 

// causes the 'set' accessor to be called.

t.Hours = 24; 

// Evaluating the Hours property 

// causes the 'get' accessor to be called.

System.Console.WriteLine("Time in hours: "

+ t.Hours); 

} 

} 

// Output: Time in hours: 24



Automatic Properties

• C# 3.0 added a shortcut version for the 
common case (or rapid prototyping) where my 
get and set just read and wrote to a backing 
store data element.

• Avoids having to declare the backing store. The 
compiler generates it for you implicitly.

public decimal CurrentPrice { get; set; }



Automatic Properties - Example

public class Student

{

private string name;

public string Name

{

get { return name;  }

set { name = value;  }

}

}

public class Student

{

public string Name { get; set; }

}



Types 

• Properties can be used in interfaces

• Can have three types of a property

read-write, read-only, write-only

// read-only property declaration

//    in an interface.

int ID { get; };



Polymorphism

A class may contain several methods with the same
name, as long as their method signatures are 
different.

For example you may define a math class with the 
commonly used math functions:

public int Average(int x, int y);

public int Average(int x, int y, int z);

public double Average (double x, double y);

public float Average (float x, float y, float z);

26



Example: ClientDB

Assume that we are to design an application to 
handle a client database (DB).

perform the following operations repeatedly:

add a new client to DB, 

remove an existing client from DB, 

check how many clients are in DB, 

find out how many clients are living in a given 
post-code area, 

get the details of an existing client from DB.

one DB object holds (or links to) multiple client 
objects

27



Client Objects

A client object would contain:

the name of the client

the phone number of the client

the home address

the credit information

We want to be able to do such things as

get or change the name of the client

get or change the phone number

modify the client credit information

check whether two clients are in fact the same person

28



ClientDB Object

Links to all clients currently in our DB

the total number of clients in the DB

the capacity of the DB

we would like to be able to:

add (or remove) a client to (or from) the DB

tell us the total number of clients

tell us whether a given person is one of the clients in the DB

find out how many clients live in the given post-code area

29



Modelling the Clients

One class to model any client.

Each client will only have a name (including first 
name, last name etc). 

You may add phone number, home address etc

Each client can get and change its name, can confirm 
whether a given name is the same as its own 
name.

30



Create a ClientDB Project

Start Visual Studio.

Create a new project - select Windows Forms 
Application template

change the project name from the default 
“WindowsFormsApplication1” to “ClientDB”

Bring up “Solution Explorer” (View =>Solution 
Explorer)

Add a new class to the project by right-clicking 
ClientDB project from Solution Explorer, then 
select Add=>class, then select the “Class” 
template, change the name of the class from 
“Class1.cs” to “Client.cs”. 

31



These are internal representation 
of the client name. They are not 
visible outside of the class or 
object.

This is the property - the public 
can “get” and “set” the FullName 
of the client. 

The instance constructor 

The method to check whether the 
given name is same as this 
client’s name

The Age property

Client class



Splitting a String

We need to break the string such as “John Smith” into 

“John” and “Smith” to separate the first name from 
the last name. 

Standard string handling method “split” can be used to 
separate a string based on the string separators, 

space   “  ” and dot “.”

Assume that the string object name contains the string 

“John Smith”, the following statement will create a 
new array of strings names that contains the string 

“John” and string “Smith”:
string[] names = name.Split( new string[]{" ", "."}, 

StringSplitOptions.RemoveEmptyEntries ); 

33



Separating Names

private void SetNames(string name)

{

string[] names = name.Split(new string[]{" ", "."}, 

StringSplitOptions.RemoveEmptyEntries);

int n = names.Length;  

// Length is the number of array elements (names)

if (n==1) { firstName = names[0]; }

else if (n==2) { 

firstName = names[0]; lastName = names[1];

}

else { 

firstName = names[0]; secondName = names[1]; 

lastName = names[n-1];

}

}

Note: careful readers will notice an error here: what happens if the string 
name is empty? How would you correct this error?

34



Same Name?

public bool IsSame(string name)

{

string[] names = name.Split(new string[]{" ", "."}, 

StringSplitOptions.RemoveEmptyEntries);

int n = names.Length;

return lastName.Equals(names[n-1]) && 

firstName.Equals(names[0]);

}

Again there is a serious bug in the above code

35



ClientDB class

private constant and fields:
private string companyName;

private int totalClients;  // total number of clients 

maintained by this object

private const int MAX_CLIENTS = 100;  // constant

private Client[] myClients;  // an array containing the 

clients’ object references

Instance constructor
public ClientDB(string companyName)

{

this.companyName = companyName;

totalClients = 0;

myClients = new Client[MAX_CLIENTS];

}

Note in the above, the reserve word “this” represents the current 
object (the object reference of the current object).

36



ClientDB - AddClient

public bool AddClient(string clientName)

{

// find any empty slot in myClients array

int index = -1;

for (int i=0; i<MAX_CLIENTS; ++i)

if (myClients[i] == null)  {

index = i; break;

}

if (index != -1) {

myClients[index] = new Client(clientName); 

// create a new client object

++totalClients;

return true;

}

return false;

}

37



ClientDB - RemoveClient

public bool RemoveClient(string clientName)

{

for (int i = 0; i < MAX_CLIENTS; ++i)  {

if (myClients[i] != null) {

if (myClients[i].IsSame(clientName)) {

myClients[i] = null;   

// this client object is to be garbage collected

--totalClients;

return true;

}

}

}

return false;

}

38



ClientDB - IsAClient

public bool IsAClient(string clientName)

{

for (int i = 0; i < MAX_CLIENTS; ++i) {

if (myClients[i] != null) {

if (myClients[i].IsSame(clientName)) {

return true;

}

}

}

return false;

}

39



Use Solution Explorer 
to add another class 
“ClientDB.cs” to the 
project.

4
0



Graphical User Interface

Use the Windows Forms Designer to draw the 
following window. The corresponding source code 
file is named Form1.cs.

41



Modify Form1.cs

In Form1.cs class, we add a field to represent the 
ClientDB object: CDB 

When the Form1 is instantiated in Program.cs, its 
constructor is executed. We add a line (in red 
colour) in From1’s constructor to create a ClientDB
object:

public Form1(

{

InitializeComponent();

CDB = new ClientDB("Do Nothing Pty Ltd");

}

42



We add field CDB in Form1 class 
to represent the client database.



Event Handler for AddClientButton

private void AddClientButton_Click(object sender, 

EventArgs e)

{

if (!CDB.AddClient(ClientNameTextBox.Text))

{

MessageBox.Show("Cannot add this client!");

}

}

44



Event Handler for RemoveClientButton

private void RemoveClientButton_Click(object 

sender, EventArgs e)

{

if (!CDB.RemoveClient(ClientNameTextBox.Text))

{

MessageBox.Show("Cannot remove this client!");

}

}

45



Event Handler for IsAClientButton

private void IsAClientButton_Click(object 

sender, EventArgs e)

{

if 

(CDB.IsAClient(ClientNameTextBox.Text)) 

{

MessageBox.Show("Our client!");

} 

else 

{

MessageBox.Show("Not our client!");

}

}

46



ClientDB Project

The project consists of four 
source code files:

- Client.cs

- ClientDB.cs

- Form1.cs (in the form of 
two partial classes)

- Program.cs

47



Relationship between Objects

Static method: 

Main in class 

Program

A Form1

object

The 

ClientDB

object: 

CDB

Client

object 2

Client

object 1

Client

object 3

The above diagram shows  

where each object is created.



A Note

49

The ClientDB example is complex as it consists of 
several classes spread in different source code 
files.

Some of the source code in the program is 
generated by Visual Studio, particularly in 
Form1.cs and Program.cs. 

This is typical of C# programs. You MUST do your 
best to understand how the whole program 
comes together and how it works!



Exceptions

An exception is an object created at the run-time to 
represent an error condition

Exception mechanism provides a more structured, uniform, 
and general approach to handling error and abnormal 
conditions.

50



Exception (2)

Exceptions may be caused by run-time errors such as

number overflow,

array index out of bounds, 

incorrect input

The exception mechanism is also used to separate the 
normal execution flow from exceptional execution 
flow.

An exception is thrown inside a try block and is caught
by a catch block

An exception class is derived from the class 
System.Exception.  

51



Exception (3)

try 

{

// the try block containing normal stuff but the execution stops

// when an exception is thrown by one of the statements in this block

}

catch ( ExceptionType ex)

{

// catch block -these statements will be executed if the exception object

//  thrown from the try block matches the ExceptionType.

// You can have more than one catch block here 

//       with different exception type.

// If there is no need to use the exception parameter, you can omit 

//       the parameter list

}

finally

{

// this finally block is optional. If this block exists, statements 

// here will be executed after the try block executes successfully or

// after the exception is processed.

}

52



Exception Example (1)

A windows application that does division*:

the user types in two numbers then clicks button 
“Divide”

the program reads the two numbers and performs a 
division and prints the result in the result box.

53



Exception Example (2) 

private void divideButton_Click(object sender, 

EventArgs e) 

{ 

double dividend = 

Double.Parse(dividendBox.Text); 

double divisor = 

Double.Parse(divisorBox.Text); 

resultBox.Text = (dividend / 

divisor).ToString(); 

} 

The exception will cause the program to terminate 
(crash), since we have made no attempt to handle this 
exception.

54



Exception Example (3)

private void divideButton_Click(object sender, EventArgs e) 

{ 

try 

{ 

double dividend = 

Double.Parse(dividendBox.Text); 

double divisor = 

Double.Parse(divisorBox.Text); 

resultBox.Text = (dividend / 

divisor).ToString(); 

} 

catch  

// we are not using the exception parameter here

{ 

MessageBox.Show("Something went wrong!"); 

// but we can’t tell you what went wrong!

} 

} 

55



A Better Solution

private void divideButton_Click(object sender, EventArgs e) 

{ 

try 

{ 

double dividend = Double.Parse(dividendBox.Text); 

double divisor = Double.Parse(divisorBox.Text); 

resultBox.Text = (dividend / divisor).ToString(); 

} 

catch (FormatException formatEx) 

{ 

MessageBox.Show("You have to enter numbers, not text");

// this error message is more specific. 

} 

catch (Exception ex) 

{ 

MessageBox.Show("Something went wrong : " + ex.Message); 

// although we can’t tell what went wrong, we can give an

// extra message which may help the user to identify the problem.

} 

} 

56



finally block

private void divideButton_Click(object sender, EventArgs e) 

{ 

string result = ""; 

try 

{               

double dividend = Double.Parse(dividendBox.Text); 

double divisor = Double.Parse(divisorBox.Text); 

result = (dividend / divisor).ToString();

} 

catch (FormatException formatEx)  {

MessageBox.Show("You have to enter numbers, not text");

}

catch (Exception ex) 

{ 

MessageBox.Show("Something went wrong : " + ex.Message); 

} 

finally 

{ 

resultBox.Text = result;  

// this block is executed whether there is

// an exception (in which case the result box is not assigned,

// so it remains empty). If there is no exception, we assign 

// the result to the result box)

} 

} 
57



Throwing an Exception

A user program can also throw an exception:

define an exception class by subclassing
System.Exception

create an exception object using the new exception 
class, or simply using System.Exception class

Exception ex = new Exception(“A fatal 

error!”);

throw the exception object:

throw ex;

58



C# Reference

• Great resource for C#

• https://msdn.microsoft.com/en-
us/library/618ayhy6.aspx

• E.g. C# Programming Guide

• https://msdn.microsoft.com/en-
us/library/67ef8sbd.aspx

• E.g. Interfaces (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173156.aspx

https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://msdn.microsoft.com/en-us/library/ms173156.aspx


• Classes and Structs (C# Programming 
Guide)

• https://msdn.microsoft.com/en-
us/library/ms173109.aspx

https://msdn.microsoft.com/en-us/library/ms173109.aspx


• Polymorphism (C# Programming Guide)

• https://msdn.microsoft.com/en-
us/library/ms173152.aspx

• Abstract and Sealed Classes and Class 
Members (C# Programming Guide)

• https://msdn.microsoft.com/en-
au/library/ms173150.aspx

• Properties (C# Programming Guide)

• https://msdn.microsoft.com/en-
AU/library/x9fsa0sw.aspx

https://msdn.microsoft.com/en-us/library/ms173152.aspx
https://msdn.microsoft.com/en-au/library/ms173150.aspx
https://msdn.microsoft.com/en-AU/library/x9fsa0sw.aspx


Reading/ reference

You should be okay with 
Chapters 1-5

Specifically, review:

Chapter 6. Building Your Own 
Types with Object-Oriented 
Programming 

Chapter 7. Implementing 
Interfaces and Inheriting 
Classes 



Reading/ reference

Nothing this  week, but take a 
look at the book anyway, its 
really good..

We will be referring to it later.



Reading/ reference

You  could skim through these:

Chapter: CLASSES AND 
GENERICS 

Chapter: OBJECT-ORIENTED 
PROGRAMMING IN C# 



Reading/ reference

We will be covering 
Interfaces more later on, 
but if you want to look 
at this:

Chapter 13. Interfaces 



Widening and Narrowing

Few more concepts

• Assigning an object to an ancestor reference is 
considered to be a widening conversion, and 
can be performed by simple assignment
Holiday day = new SummerHoliday();

• Assigning an ancestor object to a reference can 
also be done, but it is considered to be a 
narrowing conversion and must be done with a 
cast:
SummerHoliday summerDay= new SummerHoliday();

Holiday day = summerDay;

SummerHoliday summerDay = (SummerHoliday)day;



Widening and Narrowing

• Widening conversions are most common.

Used in polymorphism.

• Note: Do not be confused with the term 
widening or narrowing and memory. Many 
books use short to long as a widening 
conversion. A long just happens to take-up 
more memory in this case.

• More accurately, think in terms of sets:

The set of animals is greater than the set of parrots.

The set of whole numbers between 0-65535 (ushort) is 
greater (wider) than those from 0-255 (byte).



Type Unification

• Everything in C# inherits from object

Similar to Java except includes value types.

Value types are still light-weight and handled 
specially by the CLI/CLR.

This provides a single base type for all instances 
of all types.

Called Type Unification


